「多重積分」の版間の差分

122行目: 122行目:
   
   
  (1) <math>\int_{0}^{1} \int_{0}^{-x^{2} + 1} xe^{-y} \, dxdy</math>
  (1) <math>\int_{0}^{1} \int_{0}^{-x^{2} + 1} xe^{-y} \, dxdy</math>
  (2) <math>\int_{0}^{1} int_{x^{2}}^{x} (x + y)^{2} \, dxdy</math>
  (2) <math>\int_{0}^{1} \int_{x^{2}}^{x} (x + y)^{2} \, dxdy</math>
<br>
<br>
(1)<br>
(1)<br>
141行目: 141行目:
\begin{align}
\begin{align}
\int_{0}^{1} x(-e^{x^{2} - 1} + 1) \, dx &= \int_{0}^{1} x \, dx - \int_{0}^{1} xe^{x^{2} - 1} \, dx \\
\int_{0}^{1} x(-e^{x^{2} - 1} + 1) \, dx &= \int_{0}^{1} x \, dx - \int_{0}^{1} xe^{x^{2} - 1} \, dx \\
&= \left [ \frac{1}{2} x^{2} \right ]_{0}^{1} - \left [ \frac{1}{2} e^{x^{2} - 1} \right ]_{0}^{1} \\
&= \left [ \frac{1}{2} x^{2} \right ]_{0}^{1} - \int_{0}^{1} xe^{x^{2} - 1} \, dx \\
&= \left [ \frac{1}{2} x^{2} \right ]_{0}^{1} - \int_{0}^{1} xe^{x^{2} - 1} \, dx \\
&= \frac{1}{2} - \int_{0}^{1} xe^{x^{2} - 1} \, dx
&= \frac{1}{2} - \int_{0}^{1} xe^{x^{2} - 1} \, dx
168行目: 167行目:
<math>
<math>
\begin{align}
\begin{align}
\int_{0}^{1} int_{x^{2}}^{x} (x + y)^{2} \, dxdy &= \int_{0}^{1} dx \biggl [ \frac{(x + y)^{3}}{3} \biggr]_{x^{2}}^{x} \\
\int_{0}^{1} \int_{x^{2}}^{x} (x + y)^{2} \, dxdy &= \int_{0}^{1} dx \biggl [ \frac{(x + y)^{3}}{3} \biggr]_{x^{2}}^{x} \\
&= \frac{1}{3} \int_{0}^{1} \left \{ 8x^{3}-(x + x^{2})^{3} \right \} \, dx \\
&= \frac{1}{3} \int_{0}^{1} \left \{ 8x^{3}-(x + x^{2})^{3} \right \} \, dx \\
&= \frac{1}{3} \int_{0}^{1} (-x^{6} - 3x^{5} - 3x^{4} + 7x^{3}) \, dx
&= \frac{1}{3} \int_{0}^{1} (-x^{6} - 3x^{5} - 3x^{4} + 7x^{3}) \, dx