直交直線座標から円座標への変換
直交直線座標 から円座標 への変換は次式で与えられる。
ヤコビアン
2重積分に応用するには、変数変換を行うことにより、ヤコビアンを計算して と の関係式を求める必要がある。
したがって、 となる。
求め方
円が含まれる場合は、極座標変換 とおく。
変換後の積分範囲D'は、 の形に変形でき、2重積分を計算することができる。
ここで、 として変数変換を行う。
より、 となる。
また、 の時、積分範囲は次式となる。
上記の変数変換により、上式(1)は次のように計算することができる。
__FORCTOC__