「情報理論 - 定常情報源」の版間の差分

ナビゲーションに移動 検索に移動
2行目: 2行目:
定常情報源とは、時間的な特性が一定している情報の発生源を指す。<br>
定常情報源とは、時間的な特性が一定している情報の発生源を指す。<br>
例えば、シンボルの出現確率が時間によって変化せず、一定の統計的性質を保持している情報源のことを意味する。<br>
例えば、シンボルの出現確率が時間によって変化せず、一定の統計的性質を保持している情報源のことを意味する。<br>
<br>
すなわち、任意の正整数nとiおよび情報源アルファベットの任意の元 <math>x_{0}, x_{1}, \cdots, x_{n-1}</math> に対して、<br>
<math>P_{X0 \, X1 \, \cdots \, Xn-1} (x_{0}, x_{1}, \cdots, x_{n-1}) = P_{Xi \, Xi+1 \, \cdots \, Xi+n-1} (x_{0}, x_{1}, \cdots, x_{n-1})</math> が成立するとき、この情報源を定常情報源という。<br>
<br>
<br>
定常情報源の特徴として、以下に示すような性質が挙げられる。<br>
定常情報源の特徴として、以下に示すような性質が挙げられる。<br>
10行目: 13行目:
*: 十分長い時間で観測する時、時間平均が集合平均に一致する性質を持つ。
*: 十分長い時間で観測する時、時間平均が集合平均に一致する性質を持つ。
*: これにより、長期的な統計的性質を予測することが可能になる。
*: これにより、長期的な統計的性質を予測することが可能になる。
<br>
定常情報源の出力は、各時点において同一の確率分布に従う。<br>
この確率分布を定常分布という。<br>
<br>
<br>
定常情報源は、通信システムの設計や情報圧縮において重要となる。<br>
定常情報源は、通信システムの設計や情報圧縮において重要となる。<br>

案内メニュー